Вопросы защиты трехфазных электродвигателей

В журнале уже рассматривались вопросы защиты асинхронных трехфазных электродвигателей, но в основном это защита от пропадания фазы [1, 2]. Реже можно встретить защиту электродвигателя от так называемого перекоса фаз, т.е. когда напряжение в одной или сразу в двух фазах по какой-либо причине уменьшается (или увеличивается) до недопустимого значения. В таких случаях защита от пропадания фазы обычно не срабатывает, так как напряжение в фазе остается, но на двигатель понижение напряжения в фазе до 150...160 В оказывает плачевный результат: через некоторое время двигатель перегревается и сгорает. То же

самое можно сказать и о повышении напряжения. Обмотка, рассчитанная на 220 В, не очень хорошо переносит повышение напряжения свыше 250 В. Эта проблема особенно актуальна в тех случаях, когда двигатели работают в отсутствии человека (например, водяные насосы, лифты и др.), а так же в сельской местности, где качество электрических сетей оставляет желать лучшего. Еще актуальным является вопрос контроля за температурой самого электродвигателя, так как существует много причин, вследствие

которых двигатель может перегреться. Например, возрастание нагрузки на валу или заклинивание. В конце концов, в наше сложное время, приходится сталкиваться со случаями установки двигателя, мощность которого недостаточна для данного оборудования, ввиду отсутствия электродвигателя необходимой мощности. В этих случаях защита от перегрева оказывает положительный результат.

Вопросы защиты трехфазных электродвигателей

Биметаллические тепловые реле, установленные в пускателях, часто не срабатывают тогда, когда это необходимо. Поэтому, учитывая вышеизложенное, предлагаю еще раз рассмотреть некоторые способы защиты электродвигателей.

Самый простой способ - это установка двух реле с обмотками на 220 В (рис.1).

Такая защита знакома многим электрикам и помогает защитить двигатель от пропадания фазы. Обмотка пускателя включается через нормально разомкнутые контакты реле К1 и К2. Таким образом, при отсутствии любой из фаз пускатель размыкается. В [1] описывается устройство, на мой взгляд, слишком сложное для той функции, которую оно выполняет. Схема, показанная на рис.1, вполне способна почти полностью заменить его. Если используется пускатель с обмоткой на 380 В, то нужно верхний по схеме контакт реле К1 отсоединить от земляного провода и подсоединить к фазе А или фазе В.

При отсутствии реле с обмотками на 220 В можно воспользоваться реле на 12...24 В, а также добавить в схему индикацию пропадания фазы. Такая схема показана на рис.2.

Индикаторы в ряде случаев позволяют быстрее заметить обрыв фазы и облегчить устранение неисправности. Эта схема позволяет использовать широкий выбор реле. Достаточно только подобрать конденсаторы С2, С4 с таким расчетом, чтобы получить на обмотке используемого реле необходимое напряжение. Обычно емкость конденсаторов выбирается в пределах 0,47.1,5 мкФ. На схеме, показанной на рис.2, указана емкость конденсаторов С2, С4 при использовании реле К1 и К2 типа РСЧ-52, паспорт РС4.52 3.205 с сопротивлением обмотки 220 Ом. Светодиоды в схеме можно взять типа АЛ307 или любые другие, нормально светящиеся при токе 5.10 мА. Диодный мост VD1, VD2 можно использовать любой на напряжение выше 200 В и допустимым током, требуемым для примененного типа реле. Конденсаторы типа К73- 17, резисторы типа МЛТ-0,125.

Вышеприведенные схемы защиты от обрыва фаз просты и надежны в работе, для их сборки не требуется высокая квалификация, однако они не защищают электродвигатели от перекоса фаз.

На рис.3 показана схема устройства защиты трехфазных двигателей от перекоса фазы, обрыва фазы, включает в себя контроль за температурой двигателя при помощи термодатчика, закрепленного на корпусе двигателя. Устройство состоит из трех каналов, каждый из которых контролирует напряжение в соответствующей ему фазе, и канала контроля за температурой на корпусе двигателя. Выходы всех каналов объединяются при помощи схемы "И-НЕ" и поступают на исполнительное устройство. Все три канала контроля за уровнем напряжения фаз аналогичны и состоят из цепи формирования контролируемого напряжения, двух компараторов и элемента объединения "ИЛИ-НЕ".

Рассмотрим работу одного из каналов, контролирующего напряжение в фазе А. Напряжение фазы понижается и выпрямляется до 3,5.4 В цепью R15, R16, VD2, R1, R2, С2. В итоге на положительном выводе конденсатора С2 получается напряжение, прямо пропорциональное напряжению в контролируемой фазе. Это напряжение поступает на входы компараторов DA1, выполненных на сдвоенном ОУ КР140УД20, причем один из входов инвертирующий, а второй неинвертирующий. На соответствующие вторые входы ОУ подано образцовое напряжение, снимаемое с резисторов КР1 и КР2. При этом на неинвертирующий вход DA1 (вывод 2) подается образцовое напряжение, которое соответствует минимальному напряжению на конденсаторе С2, а на инвертирующий вход ОА1 (вывод 7) подано образцовое напряжение, соответствующее максимальному напряжению на конденсаторе С2. В результате на выводах 10 и 12 ОУ DA1 будет низкий уровень, если напряжение на конденсаторе С2 находится в пределах, установленных потенциометрами КР1, КР2, а на выходе ячейки "ИЛИ-НЕ" DD1.1 будет соответственно высокий уровень. Как только напряжение выйдет за эти пределы, один из компараторов переключится и на его выходе установится уровень единицы, что приведет к изменению уровня на выходе DD1.1 на низкий. Все три выхода каналов контроля напряжения поступают на объединяющую ячейку DD2.1. Сюда же поступает уровень единицы с компаратора, выполненного на ОУ DА6, который контролирует температуру датчика кТ1.

Вопросы защиты трехфазных электродвигателей

При нагревании терморезистора RТ1 его сопротивление уменьшается и соответственно уменьшается напряжение на выводе 3 DА6. Это приводит к изменению уровня на выходе DА6 на уровень нуля при достижении входным напряжением на неинвертирующем входе ОУ уровня, выставленного потенциометром RР2 на инвертирующем входе DА6. Конденсатор С5 сглаживает помехи, которые могут возникать на проводе, идущем от термодатчика, так как его длина обычно 2.3 м. Сопротивление терморезистора может отличаться от указанного в схеме. Необходимо только проконтролировать, чтобы напряжение в точке соединения кТ1, R9 при нагретом терморезисторе было выше 2 В, так как компаратор на ОУ при однополярном питании и входном напряжении ниже 1,5 В работает нестабильно.

Это же касается и напряжений на конденсаторах С2-С4, которые поступают на ОУ DА1-DА3, а также образцового напряжения на движке резистора кР1. Минимальное их значение не должно устанавливаться ниже 2 В.

Вопросы защиты трехфазных электродвигателей
Вопросы защиты трехфазных электродвигателей
Вопросы защиты трехфазных электродвигателей
Вопросы защиты трехфазных электродвигателей

Изменение состояния любого из компараторов, контролирующих напряжение, или компаратора, контролирующего температуру, индицируют соответственно светодиоды HL1 и HL2. С выхода ячейки DD1.1 через сглаживающую цепочку С7, R21 и DD2.3, инвертирующую его, сигнал поступает на транзистор VT1, нагруженный на реле К1. Сглаживающая цепочка устраняет возможное дребезжание реле при коротких бросках в одной из фаз, неопасных для двигателя, а также дает задержку срабатывания защиты около 2...4 секунд. При необходимости это время можно увеличить, увеличив соответственно емкость конденсатора С7. Контакты реле, замыкаясь, подают напряжение на пускатель. Схема позволяет использовать пускатель любой величины и с напряжением обмотки не только 380 В, но и 220 В. Для этого достаточно верхний по схеме вывод обмотки пускателя подсоединить не к фазному проводу, а к земляному.

Питается устройство стабилизированным напряжением 9 В, полученным при помощи стабилизатора DA5. Образцовое напряжение, которое подается на потенциометры RP1, RP2 и резисторы R9, R10, снимается со стабилизатора DA4. Максимальный ток, потребляемый схемой при разомкнутом реле К1, не превышает 30 мА, поэтому радиатор для стабилизатора DA5 не требуется. В качестве трансформатора TR1 можно использовать практически любой трансформатор с вторичной обмоткой на напряжение 18...20 В и способный обеспечить ток для питания используемого реле.

На рис.4 показана печатная плата устройства. Она выполнена на двустороннем фольгированном стеклотекстолите. На плате расположены все элементы с рис.3, кроме трансформатора ТК1, реле К1, диода VD5 (подпаивается непосредственно к выводам реле) и, конечно же, пускателя К2.

Детали. Резисторы, примененные в схеме, могут быть типа С2-23 или МЛТ-0,125, кроме Р15, М7, М9. Последние должны быть мощностью 0,5 Вт. Желательно подобрать резисторы R1-R6, R15-R20 в каждый канал с минимальным разбросом по каналам. Так как образцовое напряжение поступает параллельно на все три канала, то при большом разбросе этих сопротивлений будет и большой разброс в уровнях срабатывания компараторов. Примененные подстроечные резисторы типа СПЗ-19АВ можно заменить резисторами типов СП5- 16ВВ, СП5-16ВА. Электролитические конденсаторы, используемые в схеме, типа К50-35, но лучше использовать импортные конденсаторы типа К10-17. Транзистор 2SD1111 можно заменить отечественным КТ972 с любым буквенным индексом. ОУ КР140УД20 можно заменить LМ358N, КР574УД2А или одинарными КР140УД6, УД7 (при условии изменения печатной платы). Терморезистор можно использовать практически любого типа, например ММТ-4, СТ1, ТР-4. В качестве ВА5 можно использовать стабилизатор КР142ЕН8А, Б, Г, Д. Реле К1 я использовал импортное (ЕІевІа КR8S), но можно использовать любое другое с обмоткой на 24 В и контактами, способными коммутировать напряжение 380 В.

Налаживание устройства несложное и заключается в основном в установке пределов срабатывания компараторов. Для этого можно временно соединить все три входа устройства и через автотрансформатор относительно "земли" подать на них напряжение. Вначале на автотрансформаторе устанавливают напряжение 180 В и при помощи вольтметра с входным сопротивлением не менее 1 МОм замеряют напряжение на положительных выводах конденсаторов С2-С4. Оно должно быть практически одинаковым. Если оно отличается более чем на 0,1 В, то необходимо при помощи незначительного изменения сопротивления резисто-

ров, например, R4, R6 приравнять напряжения на конденсаторах СЗ, С4 к напряжению на конденсаторе С2. Далее подключают вольтметр к движку потенциометра RP1 и устанавливают на нем такое же напряжение, как на конденсаторах С2-С4. Затем на автотрансформаторе устанавливают напряжение 250 В, замеряют напряжение на конденсаторах С2-С4 и устанавливают на движке RP2 такое же. После этого устанавливают на автотрансформаторе напряжение 220 В, при этом должен засветиться светодиод НИ. Далее нужно настроить термодатчик. Для этого движок потенциометра RP2 устанавливают в верхнее по схеме положение, нагревают терморезистор до необходимой температуры и, вращая движок потенциометра, добиваются погасания светодиода Н2. Как только терморезистор немного остынет, Н2 вновь должен засветиться. При свечении обоих светодиодов должно срабатывать реле К1. В конце настройки проверяют срабатывание защиты по каждому каналу в отдельности. Для этого подсоединяют устройство к трехфазной сети в соответствии со схемой и включают автотрансформатор поочередно в цепь каждого канала. Уменьшая и увеличивая напряжение на автотрансформаторе, контролируют погасание светодиода Ш при достижении входным напряжением выставленных границ. На этом настройка закончена.

При отсутствии автотрансформатора настройку каналов контроля напряжения можно выполнить, используя таблицу, при условии, что номиналы резисторов R1-R6, R15-R20 соответствуют номина-

лам, указанным в схеме на рис.3. Для этого на движках потенциометров 1Р1, RP2 устанавливают напряжения минимального и максимального уровней срабатывания компараторов, выбранных из данной таблице.

Если в использовании датчика термозащиты нет необходимости, то можно не подсоединять к схеме терморезистор. При этом на выходе DA6 все время будет высокий уровень, и устройство будет полностью работоспособно.

Литература

  1. Коломойцев К.В. и др. Устройство защиты трехфазного двигателя от обрыва фазы//Электрик. - 2002. - №11. - С.2-4.
  2. Коротков ИА Индикатор наличия фаз//Электрик. - 2002. - №11. - С. 12-13.


Обсудить на форуме

Комментарии

Добавить комментарий
    • bowtiesmilelaughingblushsmileyrelaxedsmirk
      heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
      winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
      worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
      expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
      disappointedconfoundedfearfulcold_sweatperseverecrysob
      joyastonishedscreamtired_faceangryragetriumph
      sleepyyummasksunglassesdizzy_faceimpsmiling_imp
      neutral_faceno_mouthinnocent

    ИНДИКАТОР НАЛИЧИЯ ФАЗ

    Те, кто работает с трехфазными электродвигателями, знают насколько опасно для двигателя пропадание одной фазы. Заметить это сразу может только специалист, так как двигатель продолжает работать, только немного изменяется звук.

    Устройство защиты трехфазного двигателя от обрыва фазы

    В статье приводится описание устройства защиты трехфазного асинхронного двигателя от обрыва фазы питающей сети. Схемой устройства предусмотрен автоматический контроль токов в линии питания двигателя с помощью датчиков трансформаторного типа.

    ЗАЩИТА ТРЕХФАЗНЫХ ДВИГАТЕЛЕМ ОТ НЕСИММЕТРИЧНЫХ РЕЖИМОВ РАБОТЫ

    Во многой литературе дано описание несложных схем защиты электродвигателей (ЭД) с помощью токового реле, которое включено между нулевой точкой двигателя и нейтралью сети.

    Защита RS-232 от перенапряжения

    Поскольку большинство современных компьютеров имеют интегрированные в материнскую плату порты, защита их от перенапряжения достаточно актуальна, так как вышедший из строя порт зачастую приводит к неработоспособности всей материнской платы.

    Типовые схемы пуска синхронных электродвигателей

    Для эксплуатации синхронных двигателей большое значение имеет правильный выбор схемы подключения. Сегодня наиболее распространенной, простой и надежной схемой является схема прямого пуска от полного сетевого напряжения. Исключение: двигатели с

    Схема подключения однофазного электродвигателя

    На статоре однофазного двигателя имеются две обмотки: (U1, U2) и вспомогательная (Z1, Z2), которые еще называют главной и пусковой фазой. Вспомогательную назвали пусковой за то, что она включается только на время пуска двигателя.