trust already work Особенности работы и конструкции асинхронного двигателя » Портал инженера

Особенности работы и конструкции асинхронного двигателя

Трехфазный асинхронный двигатель изобретен в конце 80-х годов XIX в. в Германии в электротехнической компании AEG инженером
русского происхождения Михаилом Осиповичем Доливо-Добровольским. Эта электрическая машина была создана как составная часть системы трехфазных электрических цепей переменного тока, получивших очень широкое распространение в электроэнергетике. В настоящее время трехфазные цепи составляют основу большинства мировых систем производства и передачи электрической энергии.
Трехфазная электрическая система состоит из трех силовых проводов — трех фаз и так называемого нулевого провода (рис. 1.1). Каждый из проводов трех фаз вместе с нулевым проводником представляет собой двухпроводную однофазную электрическую цепь переменного тока. Но переменные напряжения в этих трех однофазных цепях не синхронны, а сдвинуты друг относительно друга во времени (по фазе) строго на 1/3 периода (рис. 1.2). При таком равномерном сдвиге по фазе трех одинаковых по амплитуде фазных переменных напряжений их алгебраическая сумма всегда равна нулю.
Режим работы трехфазной электрической цепи принято характеризовать следующими основными параметрами (см. рис. 1.1):
•фазный ток—ток, протекающий по фазам A, B, C;
•фазное напряжение — напряжение между фазами A, B, C и нулевым проводом
 ;

Особенности работы и конструкции асинхронного двигателя

Рис. 1.1. Трехфазная электрическая цепь

Особенности работы и конструкции асинхронного двигателя

Рис. 1.2. Фазные напряжения трехфазной электрической цепи

•линейное напряжение—напряжение между парами фаз A—B, B—C, C—A.
•частота напряжения и тока.
Нагрузка трехфазной электрической цепи в общем случае может быть как трехфазной (например, промышленные электрические машины), так и однофазной (бытовые устройства, освещение).
Трехфазные нагрузки обычно потребляют равную мощность по каждой из фаз. Поэтому фазные токи, которые протекают по фазам под действием трех одинаковых по амплитуде фазных переменных напряжений, также в сумме всегда равны нулю. Это означает, что по нулевому проводу ток не протекает. И поэтому для подключения трехфазных нагрузок к питающей трехфазной цепи нулевой провод часто не используют.
Однофазные нагрузки обычно включают между фазами и нулевым проводом. При этом суммарные мощности нагрузок по каждой
из фаз могут различаться. В этом случае сумма фазных токов трехфазной цепи уже не будет равна нулю и по нулевому проводу будет протекать ток, который зависит от разности мощностей нагрузок фаз.
Физические основы образования вращающего момента у асинхронного двигателя аналогичны традиционным двигателям постоянного тока: если проводник с электрическим током поместить в магнитное поле, на этот проводник начинает действовать сила, направленная перпендикулярно проводнику и поперечно магнитному полю (рис. 1.3).

Особенности работы и конструкции асинхронного двигателя

И у асинхронного двигателя, и у двигателя постоянного тока магнитное поле создают обмотки статора. А ток, образующий вращающий момент при взаимодействии с магнитным полем, протекает по проводникам обмотки ротора.

  Асинхронный двигатель отличается от двигателя постоянного тока
двумя принципиальными особенностями:
•магнитное поле статора у асинхронного двигателя—вращающееся, а не неподвижное;
•в асинхронном двигателе в обмотку ротора электрический ток поступает из внешних цепей бесконтактным трансформаторным способом, а не через скользящий контакт между щетками и коллектором.
Отсутствие скользящего электрического контакта между цепями статора и ротора у асинхронных двигателей и является основной причиной широкой популярности таких электрических машин. В целом отсутствие коллектора дает следующие важные практические преимущества:
•упрощение конструкции двигателя;
•повышение надежности двигателя;
•повышение мощности двигателя при тех же габаритах (так как коллектор и щетки в двигателе постоянного тока занимают достаточно много места, в асинхронном двигателе с теми же внешними размерами этот объем можно использовать для увеличения активной электромагнитной части, повышая тем самым мощность и вращающий момент);
•снятие жестких ограничений по рабочему напряжению (так как именно коллектор в двигателе постоянного тока часто лимитирует уровень предельного рабочего напряжения, а соответственно, и мощность).
Вращающееся магнитное поле принципиально необходимо для работы асинхронного двигателя. Только в этом случае процесс трансформации электрической энергии из обмотки статора в обмотку ротора будет формировать вращающий момент на валу двигателя.
Стационарное переменное магнитное поле статора также будет наводить ЭДС в обмотке ротора асинхронного двигателя, как в обычном трансформаторе, и ток в обмотке ротора появится. Но электромагнитная сила, действующая при этом на проводники ротора, также переменная. Она будет создавать вибрации, а не устойчивый вращающий момент определенного направления.
Вращающееся магнитное поле в асинхронном двигателе индуцирует в проводниках обмотки ротора такие токи, которые образуют электромагнитные силы, действующие всегда в одном направлении. Эти силы в сумме и образуют вращающий момент на валу двигателя независимо от того, стоит ротор двигателя на месте или вращается.
Механизм формирования вращающего момента асинхронного двигателя под действием вращающегося магнитного поля имеет две важные особенности.

Первая особенность заключается в следующем. В соответствии с фундаментальными законами электротехники существуют два вида процессов, при которых в некоем проводнике наводится ЭДС индукции:
•изменение напряженности магнитного поля, пронизывающего проводник;
•движение проводника в стабильном магнитном поле.
Иными словами, если проводник просто держать неподвижно в стабильном магнитном поле, ЭДС в этом проводнике не появляется.
Именно такая ситуация возникает в асинхронном двигателе, когда
скорость вращения ротора равна скорости вращения магнитного поля.
При таком синхронном вращении ротора и магнитного поля перемещение проводников обмотки ротора относительно магнитного поля будет отсутствовать и напряженность магнитного поля, пронизывающего каждый из проводников, всегда будет одна и та же. В таком режиме ЭДС индукции в проводниках обмотки ротора не появляется, ток в обмотке ротора не возникает и вращающий момент двигателя равен нулю.
Именно из-за этого свойства такой двигатель и получил наименование «асинхронный», потому что он развивает вращающий момент на валу, только если вращение ротора «отстает» от вращения магнитного поля.
Вторая особенность заключается в следующем. Если частота вращения ротора по каким-либо причинам становится больше частоты вращения магнитного поля, двигатель автоматически переходит в режим генераторного торможения. Это происходит вследствие того, что, когда вращение проводников обмотки ротора начинает опережать вращение магнитного поля, полярность ЭДС индукции и направление тока в этих проводниках меняются на противоположные. Соответственно меняют направление вращения на противоположное электромагнитные силы, действующие на проводники обмотки ротора.
Сформировать вращающееся магнитное поле статора можно, например, следующим образом. Если взять статор шестиполюсного двигателя постоянного тока и включать пары противоположных полюсов поочередно, то в этом статоре появится вращающееся магнитное поле (рис. 1.4).
Такой же эффект может быть достигнут, если три пары полюсов запитать от трехфазной цепи. Как было сказано выше, в такой цепи напряжения и токи фаз равномерно сдвинуты друг относительно друга по времени. Это означает, что максимального значения токи в фазах достигают поочередно. Соответственно и максимальная напряженность магнитного поля в парах магнитов на рис. 1.4 будет возникать поочередно, что эквивалентно поочередному включению пар магнитов.
Скорость вращения магнитного поля статора, показанного на рис.
1.4, зависит от того, как часто переключаются пары магнитов. При питании же от трехфазной сети скорость вращения магнитного поля статора определяется частотой тока. У статора, показанного на рис. 1.4, на
каждую фазу приходится одна пара полюсов. Это означает, что магнитное поле будет делать один полный оборот за время, равное одному пе риоду питающего тока. Например, при частоте тока обмотки статора 50 Гц скорость вращения магнитного поля в таком статоре составит 50 об/с, или 3000 об/мин.

Особенности работы и конструкции асинхронного двигателя

Рис. 1.4. Формирование вращающегося магнитного поля статора двигателя с шестью полюсами
Если на статоре разместить не 6, а 12 магнитов и повторить очередность чередования фаз два раза за один полный механический оборот, то скорость вращения поля снизится в два раза и при частоте тока статора 50 Гц составит 25 об/с, или 1500 об/мин, и т. д.
В принципе, можно сделать асинхронный двигатель не только трехфазным, но и четырехфазным, пятифазным и т. д. Но это уже мало что дает в практическом смысле и заметно усложняет обмотку статора. Поэтому вместе с системой трехфазного тока классической стала конструкция именно трехфазного асинхронного двигателя.
Существуют также одно- и двухфазные асинхронные двигатели, но такие электрические машины имеют специфичные характеристки и используются только в маломощных бытовых устройствах.
Трехфазный асинхронный двигатель является электрически и магнитно симметричным по фазам. Обмотки трех фаз имеют идентичные
параметры и развивают одинаковую мощность. В этом случае, как говорилось выше, нулевой провод трехфазной питающей цепи не требуется, и поэтому статоры асинхронных двигателей, как правило, имеют только фазные выводы. При этом обмотки магнитных полюсов трех фаз обычно соединяют двумя способами: «звездой» или «треугольником» (рис. 1.5).

Особенности работы и конструкции асинхронного двигателя

Рис. 1.5. Схемы соединения фазных обмоток асинхронного двигателя

Особенности работы и конструкции асинхронного двигателя

Рис. 1.6. Общий вид статора асинхронного тягового двигателя
Обмотка ротора асинхронного двигателя является короткозамкнутой, так как никаких других элементов в ее цепи нет. Конечно, эта обмотка всегда имеет определенные активное сопротивление и индуктивность, как любая обмотка вообще.
В современных асинхронных двигателях статор не делают с явными полюсами, как показано на рис. 1.4. Чтобы более эффективно использовать объем, обмотку статора в асинхронном двигателе распределяют равномерно в пазах (рис. 1.6), так же как это делают на роторе коллекторного двигателя постоянного тока. Если представить статор такой машины в плоском развернутом виде,
то размещение проводников обмотки трехфазного двигателя с шестью фазными полюсами будет выглядеть, как показано на рис. 1.7. На этом рисунке обмотка каждого из полюсов условно показана размещенной в двух пазах.
Реально в асинхронном двигателе на каждый полюс обычно делают больше пазов и витков для повышения плавности распределения магнитного потока вдоль воздушного зазора между статором и ротором.

Особенности работы и конструкции асинхронного двигателя

Рис. 1.7. Упрощенная развернутая схема обмотки статора асинхронного двигателя

Особенности работы и конструкции асинхронного двигателя

Рис. 1.8. Общий вид ротора асинхронного тягового двигателя
Обмотку ротора асинхронного двигателя делают также в виде расположенных в пазах проводников, замкнутых между собой с торцов кольцами (рис. 1.8). Такая конструкция обмотки ротора получила название «беличья клетка». Так как все проводники обмотки ротора замкнуты между собой накоротко, изолировать проводники ротора от стального тела ротора не имеет смысла. Это дополнительно упрощает конструкцию двигателя и повышает его надежность.



Обсудить на форуме

Комментарии

Добавить комментарий
    • bowtiesmilelaughingblushsmileyrelaxedsmirk
      heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
      winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
      worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
      expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
      disappointedconfoundedfearfulcold_sweatperseverecrysob
      joyastonishedscreamtired_faceangryragetriumph
      sleepyyummasksunglassesdizzy_faceimpsmiling_imp
      neutral_faceno_mouthinnocent

    СООРУЖЕНИЯ И УСТРОЙСТВА ЭЛЕКТРОСНАБЖЕНИЯ

    Железнодорожный транспорт потребляет около 7 % энергии, производимой электростанциями России. В основном она расходуется на обеспечение тяги поездов и питания нетяговых потребителей, к которым относятся станции, депо, мастерские и устройства

    Электродвигатели переменного тока собственных нужд Тепловоз 2ТЭ116

    На тепловозе 2ТЭ116 для привода вентиляторов охлаждения используют электродвигатели переменного тока, питающиеся непосредственно от тягового генератора.

    Классификация Автоматических Выключателей. Типы Автоматов Электрических.

    Автоматический выключатель представляет собой электротехническое устройство, основным назначением которого является совершение переключение своего рабочего состояния при возникновении определённой ситуации.

    Схемы подключения асинхронного электродвигателя

    Асинхронный электродвигатель является основой многих инструментов, например, таких как сверлильный и точильный станок. Обычно концы обмоток такого двигателя выводятся на трех- или шестиклеммную колодку. В первом случае речь будет идти о схеме

    Схема подключения однофазного электродвигателя

    На статоре однофазного двигателя имеются две обмотки: (U1, U2) и вспомогательная (Z1, Z2), которые еще называют главной и пусковой фазой. Вспомогательную назвали пусковой за то, что она включается только на время пуска двигателя. 

    УМЗП-1,6-127-50Д У3 Магнитный усилитель

    Трехфазный магнитный усилитель УМ3П-1,6-127-50Д применяется для изменения величины и направления токов в независимой обмотке возбуждения генератора на экскаваторе.